Chapter six Dimensional Analysis

Chapter 6-Dimensionless Analysis

[Jimensional anallsis is a mathematical techniliie used to predict phlsical parameters
that influence the flo[] in fluid mechanics! heat transfer in thermod/hamics[ and so forth.
The anal(sis involves the fundamental units of dimensions M [T mass[len[th[and time.
[t is helpful in el perimental [Jork [ecause it provides a [uide to factors that sil hificantl[]
affect the studied phenomena.

[limensionless anallsis is commonll] used to determine the relationships [etlleen
several varialles(li.e. to find the force as a function of other varialles [Then an elact
functional relationship is unkno['n. [Jased on understandin/of the prollem[] e assume

a certain functional form.

lefore [elinninl [ it is important to define some dimensionless parameters| |

1- Reynolds number(the ratio of inertia force to viscous force. [t is important in all

t pes of fluid d[hamics prol lems

Rez'O—VI
MU

2- Mach number(the ratio of inertia force to compressililitllforce. [t is important in

flols in [Jhich the compressililit[Jof the fluid is important.

M =—
C

[ There C 1s the speed of sound C = /yRT for [asesland C = \/g for liluids[ T There [

is the [ulk modulus of compression[¥ is the specific heat ratio.
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Chapter six Dimensional Analysis

3- Froude number(ithe ratio of inertia force to [tavitational force. [f is important in

flo[] [Jith a free surface.

Fr=—

Jal

4- Weber number[the ratio of inertia force to surface tension force. [t is important in
prollems in [hich surface tension is important
1

Wezpv

o)

Notes:
|"is a characteristic len[ th for the s stem.
5- Euler numberthe ratio of the pressure force to inertia force. [t is important in

prollems in [Jhich pressurelor pressure differences| are of interest.

Eu= P2
oV

Units/Dimensions
The defined units are [ased on the modern M T sl stem[mass[len[th time. [ll other
[hantities can (e el press in terms of these [ asic units.

Lor e[ amplel ]

velocit[] mls T

acceleration | m/s[] T[]

force km[s[] MIOITO
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“here [ITOOTIIIMUT [Metc. are referred to as the derived units. [lnother s[stem for
dimensionless anallsis is the [T sl steml[ the forcel len[th[ time s stem. [ this casel]

mass =F/a, which makes the units of mass as FT?/L, since acceleration has units of [[TL]

Rayleigh Method

[ In elementar[ /method for findinl[/a functional relationship [ith respect to a parameter
in interest is the [Jalleilh MethodlJand [lill [e illustrated [lith an elamplel usinl]the
MLT sLstem.

[Issume that [Je are interested in the dral I [} [ hich is a forcel on a ship. [] hat elactl[]
is the drala function ofl/These varialles need to [e chosen correctl[ [ thoulh selection

of such varialles depends larlell lon onels el perience in the topic. [t is knoln that dral]

depends on
Quantity | Symbol | Dimension
[ile 1 [
[iscositl] | m/[T
[ensit[] p m(?
elocit!] O T
Cravit(] O T

This means that Fp = f(1,p,u,V,9) There f is some function. [ ith the [Nalleilh Method[’
e assume that Fp=CI?°4°V*g°[There C is a dimensionless constant[and albc/d and e
are e[ ponents| [ hose values are not [ et kno[ In. [lote that the dimensions of the left side!(]
force[ Jmust elnal those on the rilht side. [lerel][le use onll] the threeindependent
dimensions for the varialles on the rilht sidelM[ T and T.

Step 1: Setting up the equation
[Irite the elnation in terms of dimensions onll[li.e. replace the [nhantities [Jith their
respective units. The el iation then [ecomes! |
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ML M\? /1 MANE /LN /L
7= (5) (@) 7) (@)
T2 L3 LT) \T T2

In the left side e have MILIT 2 hich is eltial to the dimensions on the rirht side.

Therefore the e[ponents of the rilht side must [& such that the units are ML1T™

e

Step 2: Solving for the exponents
[J"uate the el ponents to each other in terms of their respective fundamental units! |

M1 [0 ¢ since MITIM M° .
0 Da (3000c [1d (e since [T (TP ¢ F
TOIm e [d Olesince T OT“TT

[t is seen that there are three eluations( /[t [Junknoln varialles. This means that a
complete solution cannot [ e ol tained. Thus[ e choose to solve albland d in terms of C
and e. These choices are [ased on el perience. Thereforel |

[rom M1 [c il
[rom TCd [T [e il
‘rom [a [11 [130[0cd e il

Colvin[J[1lTT1i[Tand [iil simultaneousl [ T]e oltaina [1[1[c [Je
Culstitutin[Ithe e[ ponents [ack into the orilinal el ation[ I le oltain
[E B Cl[l:bﬁpl BMCDEE@

2\ € —C
Collectin[like e[ ponents to ether [ F, = C (‘l%) (Vui) pl?V?

[ hich means
nl [C|2|e|-cpp-clucV2V-cV-2ege
or the different e[ ponents!(]

Terms with exponent of 1: Cp
Terms Llith e[ponent of [T1 (1"
. e [Te lg e _ 2\ "¢
Terms [Jith e[ ponent of e[ 1°[] @D(ﬁ) = (E) [iv[]

—C
Terms Llith e[ponent of ¢c[1p “u°1'° D(Z’JTV) vl
The ril ht sides of [iv[ and [v[ are knol In as the dimensionless [ roups.
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Step 3: Determining the dimensionless groups
“lote that e and ¢ are unkno! In. Consider the follo[lin[Icases[’]

fTe 11 then vl ecomes (Il/%)
2
fe [0 then Qv ecomes (‘l%)

fc 11 then [¥[ 1 ecomes (ZPLV)

fc [111 then W[ ecomes (ZPTV) = (ll)

v
There v is the kinematic viscositl]of the fluid. [Ind so on for different el ponents.
turns out that[ |
le[nholds numler [ Re = VTI

1

roude numler [] Fr = (V—Z)E -
SN/ g

[There Re and Fr are the usual notations for the [le[nholds and [roude [lumlers
respectivel ] [uch dimensionless [toups keep reoccurrinl |throul hout [luid Mechanics
and other fields.

Choosinl]el ponents of -1 for ¢ and -%2 for e[| hich result in the [le[holds and [‘roude
[Jlumlers respectivel ([ 1 Je ol tain

F. = g(Fr, Re)pl "

There [1Tr[Tlelis a dimensionless function!|

This can also [& [ritten as p ;sz = g(Fr,Re)

"1 hich 1s a dimensionless [uantit[ T and a function of onl[][Jvarialles instead of [] This
dimensionless [hantit[Iturns out to Le the dralJcoefficient Cp.
Fp
Ch = ——
D= p12p2

Notes
The [Jalleilh Method has limitations [ecause of the premise that an elponential

relationship elists [etl leen the varialles.

The Buckingham © Theorem/Method

This method [ill [e illustrated [[Ithe same el ample as that for [lalleil h Method!]
the drallon a ship. [allthat [Je have n numler of [uantities [¢.[] [ [uantities ]
[thich are Dlligli V[ and gl and m num(er of dimensions
[¢.[1 3 dimensions[ [ hich are M[ L[ and T[. These [uantities can [ & reduced to (n -
m) independent dimensionless [ roups[ such as Re and Fr. [allthat[]
Al =1(A2, A3, A4, ..., An)
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[There A, are [uantities such as dralTlen[thland so forth(Jas mentioned under the n
num/er of [uantities[land f implies the functional relationship [etlleen A; and the
other [uantities.

Then relarranin[ 11 ]e ol tain [
0=1(A2, A3, A4, ..., An) - Al
0=f(A1,A2,A3,...,An)

1 hich can e further reduceduisin[Jthe [JuckinCham = Theorem, to obtain [

0= f(xl, n2, ..., Tn-m)

Forming m Groups

For each © group, take m of the [tantities Ay knolIn as m repeatin(Jvariallesl and
one of the other remainin(varialles. [lote that e[ perience dictates [hich [antities
make the [est repeatin[ lvarialles. The © groups, in general form, [Jould then [e

X V4
m =AY A AT A,

my, = A7 Ay AT As

. — AXn-m pAYn-m pAZn-m
Tpem = A" TMATTATTTT A,
"lhich are all dimensionless [uiantities.

Step 1: Setup & groups
Lor the MLIT [ stem[m = 3[ 80 choose A1l A2[ and A3 as the repeatin( |varialles. [Isin[]
the Buckingham n Theorem on the Drag Equation:

f(Fo, LpwuV.g =0

[There m = 3[n = 650 there [ill Le n - m = 3 & groups. We will select p[ V[
and | as the repeatin(Jvarialles [1J[][I]leavin[the remainin[ [ uantities as Fp[ u[and
g. [ote that if the anall sis does not [lork out! e could all]als [0 [ack and repeat
usinlInel] [J[Js. Thus(]

T = pxlvyllleD

T, = pXZVyZIZZ

T3 = px3vy3|z3g

[ hich are all dimensionless [uantities i.e. havinJunits of M°L°T®
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Step 2: Determine 7 groups
For the first & group,

e (5" (5 o (4

[ I'pandin( Jand collectin[ llike units! [ le can solve for the e[ ponents!]
CorMI0 0 01 =104 00

Cor TLO (I ()= 04 I

Cor [0 B30 [0 00 D12 z21=3(-1)-(-2)-1=-2

Therefore[ [ e find that the e[ ponents X;[y;[ and z; are [1[ 11 and [TIrespectivel ]
This means that the first dimensionless  group, m; [is

Fp
pV 212

m = p W2?F, =

or the second & group,
MR e M

T 0700 _ (4 & 23
e =(z) (7) @ ()

"olvin[Ifor the e[ ponents|]
Cor MLTHIT1 10 = KT
Cor TLII- (1 DO = LI

Cor LLI30HOICHOLLOT DO = CHIT 003 e a
Thus!(’]

_ oy, B Y
S K= Vi~ Vi

However, we will now invert 1 so that g = > = Reynolds Number

For the third © group,

o e = ()" (2w (2)

"olvin[for the el ponents!(]
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Chapter six Dimensional Analysis
Cor MLIB 110 = [B [0

Cor TLIIB L0100 = [B [

Cor L33 LB LB U1 0= [3 00 LIl

[
Thus 7y = p°V " 2lg = V_92

1 vV
CaisinJit to the polJer of (1M1 Tle (et {/ — = 7= = Froude Number
w3 /g

Thus, the three  groups can be written together as [

Fp
f(m,RB,FT’) =0

Cinall[T]

Fp

m = f(Re,Fr)

[Jote that this is the same result as oltained [lith the [Jallei’h Method[ /[uit [lith the
Buckingham n Method, we did not have to assume a functional dependence.

Notes:

1[0The repeatinl Ivarialles must represent( as possille as[ [ eometr[ ] fluid properties/
el ternal effects.

(111t is permissible to exponentiate any 7 group, e.g. -, © , © Letc.[ to form a nel]
[toupl as this does not alter the functional form.
3[J[f the prollem contains dimensionless variallelthis varialle can [e directll]

considered as m parameter.
[T1[f the anal(s1is does not [lork outI'le could allJals [0 [ack and repeat usin[ ne(]
repeatin( Jvarialles.
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Introduction to Fluid Motion

This chapter discusses the anall sis of fluid in motion [fluid dlhamics. [t is useful to
introduce some definitions al out fluid motion.

dm

Mass flow rate (rir):is the mass per time taken to accumulate this mass T = E

Volume of fluid

time

Volume flow rate-Discharge (Q),Q -

Pathline: [ pathline follo[Js the movement of a sinlle fluid particle. [f can (& produced
in the lalorator[| [ markin[la fluid particle [dlin[Ja small fluid element[land takin[la
time el posure photo! raph of its motion.

Streakline: consists of all particles in a flo[] that have previousl ] passed throulh a
common point. [ treaklines are more of a lalorator[Itool than an anal(tical tool. ThelJcan
‘e oltained [1]takin[]instantaneous photoltraphs of marked particles that all passed
throulh a [iven location in the flo[] field at some earlier time. [uch a line can [e
produced [T ]continuousl( linleéctin[ /marked fluid [neutrall[ (1ol ant smoke in air[ or dle
in [Jater[ at a [iven location.

Streamline( ] streamline is a line that is ever[ [ There tan[ént to the velocitl field. [f the
flol] is stead[ I nothin[Jat a filed point [includin(]the velocit|direction[Ichanles [lith
timel ko the streamlines are fil ed lines in space. [ br unstead( /flo[]s the streamlines mal |
chanle shape [lith time. [treamlines are oltained anallticalll] [T] inteltatin[] the
el uations definin(/lines tan( ent to the velocit! Ifield. [or t[lo/dimensional flo[s the slope
of the streamline/ must [e e[al to the tan[ent of the anlle that the velocitlIvector makes
"lith the x alis.

Uniform flow[/f the flo[] velocit[]is the same malhitude and direction at ever[Ipoint in
the fluid it is said to (e uniform.

Non-uniform(If at a [iven instant[the velocit[lis not the same at ever[Ipoint the flo[] is

nonuniform.[In practicel | [Ithis definition[ ever[ fluid that flo[Is near a solid [oundar!(’
Cill ['e nonuniform []as the fluid at the [oundarImust take the speed of the [oundar[ 1]
usualll] [ero. [lolever if the sile and shape of the of the cross(section of the stream of

fluid is constant the flo[] is considered uniform.[
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